
A r t i c l e s

732	 VOLUME 20 | NUMBER 7 | JULY 2014  nature medicine

The Hedgehog (Hh) pathway is an evolutionarily conserved sign-
aling axis that directs embryonic patterning through strict tempo-
ral and spatial regulation of cell proliferation and differentiation1. 
Developmental aberrations in Hh signaling result in dysmorphology, 
such as cyclopism, holoprosencephaly and limb deformity, when its 
output is absent or decreased2 and in cancer predisposition, as is seen 
in nevoid basal cell carcinoma syndrome (Gorlin syndrome)3, when 
its output is increased or unchecked1,4.

In canonical Hh signaling, several morphogens (sonic hedgehog 
(SHH), Indian hedgehog (IHH) and desert hedgehog (DHH))5,6 
have been identified that bind to the multipass cell-surface receptor 
Patched (PTCH1)1. When not bound by Hh ligand, PTCH1 inhibits 
the G protein–coupled receptor, SMO7. Once bound by ligand, how-
ever, PTCH1 no longer inhibits SMO, allowing SMO to positively 
regulate mobilization of the otherwise latent zinc finger transcription 
factor GLI2, residing in the cilia, to the nucleus, where GLI2 transac-
tivates the GLI1 promoter8–10. GLI1 and GLI2 directly transactivate 

transcription of Hh target genes, several of which are involved in 
proliferation, such as MYCN and CCND1 (ref. 11). GLI1 also serves 
to amplify the output of Hh signaling in a positive feedback loop 
by activating transcription of GLI2, albeit indirectly12. Ultimately, 
the transcriptional programs mediated by Hh signaling orchestrate 
an array of events based on cellular, temporal and spatial context, 
with perhaps the most phenotypically consequential event being an 
increase in cell proliferation.

Inappropriate activation of Hh signaling results in tumor formation 
in several tissue lineages, including skin, brain, muscle, breast and 
pancreas13–15. The tumors most commonly associated with aberrant 
Hh signaling are basal cell carcinoma (BCC) and medulloblastoma, 
given their prevalence in individuals with germline mutations in 
PTCH1 (Gorlin syndrome)3,4. However, the overwhelming major-
ity of Hh-driven BCCs and medulloblastomas activate Hh signaling 
through sporadic somatic mutations in PTCH1 or other components 
of the Hh pathway14,16,17. These include activating mutations in SMO 
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Hedgehog signaling drives oncogenesis in several cancers, and strategies targeting this pathway have been developed, most 
notably through inhibition of Smoothened (SMO). However, resistance to Smoothened inhibitors occurs by genetic changes of 
Smoothened or other downstream Hedgehog components. Here we overcome these resistance mechanisms by modulating GLI 
transcription through inhibition of bromo and extra C-terminal (BET) bromodomain proteins. We show that BRD4 and other 
BET bromodomain proteins regulate GLI transcription downstream of SMO and suppressor of fused (SUFU), and chromatin 
immunoprecipitation studies reveal that BRD4 directly occupies GLI1 and GLI2 promoters, with a substantial decrease in 
engagement of these sites after treatment with JQ1, a small-molecule inhibitor targeting BRD4. Globally, genes associated with 
medulloblastoma-specific GLI1 binding sites are downregulated in response to JQ1 treatment, supporting direct regulation of GLI 
activity by BRD4. Notably, patient- and GEMM (genetically engineered mouse model)-derived Hedgehog-driven tumors (basal cell 
carcinoma, medulloblastoma and atypical teratoid rhabdoid tumor) respond to JQ1 even when harboring genetic lesions rendering 
them resistant to Smoothened antagonists. Altogether, our results reveal BET proteins as critical regulators of Hedgehog pathway 
transcriptional output and nominate BET bromodomain inhibitors as a strategy for treating Hedgehog-driven tumors with emerged 
or a priori resistance to Smoothened antagonists.
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or inactivating mutations in SUFU, which negatively regulates Hh 
output downstream of SMO17,18. Genomic amplification of GLI2, and 
more rarely GLI1, has also been reported and is associated with a more 
aggressive clinical course16,19–21. In addition, noncanonical activation 
of the Hh pathway can occur through loss of SMARCB1, a component 
of the SWI/SNF chromatin remodeling complex, which results in 
derepression of transcriptional activity at the GLI1 locus in malignant 
rhabdoid tumors22. Similarly, the EWS-FLI fusion oncogene respon-
sible for Ewing sarcoma has been shown to directly transactivate the 
GLI1 promoter23.

The identification of SMO as the main pharmacological target of 
cyclopamine24, a natural compound found in wild corn lily (Veratrum 
californicum)2, fostered the development of clinically optimized 
compounds with potent activity against SMO25–27. Some of these 
compounds have shown clinical efficacy against BCC, medulloblas-
toma and other cancers28–30. However, emergence of resistance and  
a priori resistance have been encountered25,29,31, prompting investi-
gations into alternate strategies targeting new sites on SMO and Hh 
pathway components downstream of SMO32,33 or signaling pathways 
that cooperate with Hh activation in development and disease25,34,35. 
High-throughput screens have also identified scaffolds that regulate 
GLI processing and its translocation to or from the cilia and nucleus36. 
However, the effectiveness of these strategies against Hh-driven can-
cers with MYCN amplification, such as SHH-subtype medulloblas-
tomas, is unclear, as MYCN appears to be epistatic to the targets of 
many of these drugs.

A new class of drugs targeting BET bromodomain proteins (BRD2–
BRD4 and BRDT) was described recently37. Bromodomains recognize 
and bind to ε-N-lysine acetylation motifs on open chromatin, such 
as those found on K27 residues of H3 histone N-terminal tails38,39. 
The BET proteins also interact with the positive transcription elonga-
tion factor (P-TEFb)40,41 and phosphorylate Ser2 of RNA polymer-
ase II (PolII), facilitating gene transcription at ‘super-enhancer’ sites 
across the genome42,43. BRD-containing complexes that bind at these 
super-enhancer sites often localize to promoter regions of key tran-
scription factors such as MYC, and disruption of these complexes by 
BET inhibitors has produced substantial responses in mice bearing 
xenografts of treatment-refractory cancers driven by MYC and other 
previously ‘untargetable’ oncogenes, with limited or no toxicity to 
normal tissues44–47.

Here we aimed to identify whether inhibition of BET bromo-
domain proteins could provide a strategy for treating Hh-driven 
tumors, including those resistant to SMO antagonists. We provide 
evidence that BRD4 is a critical regulator of GLI1 and GLI2 tran-
scription through direct occupancy of their promoters. Furthermore, 
we show that occupancy of GLI1 and GLI2 promoters by BRD4 and 
transcriptional activation at cancer-specific GLI promoter–binding 
sites are markedly inhibited by the BET inhibitor JQ1. In GEMM- and 
patient-derived tumors with constitutive Hh pathway activation, JQ1 
effectively decreases tumor cell proliferation and viability in vitro and 
in vivo, even when genetic lesions conferring resistance to SMO inhi-
bition (SMOi) are present. Notably, the inhibition of cell proliferation 
by JQ1 can be rescued by GLI2 expression driven by a plasmid-based 
cytomegalovirus (CMV) promoter, which, in contrast to endog-
enous GLI promoters, is not under direct transcriptional regulation 
by BET proteins. In sum, our study identifies BET proteins as epige-
netic regulators of Hedgehog transcriptional output and establishes a 
rationale for the use of BET inhibitors in cancers with evidence of Hh  
pathway activation.

RESULTS
BRD4 is required for ligand-induced Hh transcriptional output
The BET protein BRD4 enhances the transcription of key genes 
involved in embryonic stem cell maintenance42 and oncogenesis43. 
Therefore, we hypothesized that BRD4 is a transcriptional cofactor 
for Hh-responsive genes. In the mouse 3T3 cell–based Hh-Light2 
reporter line containing a stably integrated Gli-luciferase reporter 
construct48, ligand-induced activation of Hh-Light2 cells with either 
Shh-N conditioned medium (CM)49 or Smoothened agonist (SAG)48 
resulted in an expected increase in Gli1-luciferase activity and Gli1 
mRNA levels, which were both potently inhibited by increasing 
doses of the BET inhibitor JQ1 (Fig. 1a and Supplementary Fig. 1). 
Upregulation of other Hh target genes such as Ptch1 and Gli2 was also 
inhibited by JQ1 (Fig. 1b). In contrast, Smo expression was modestly 
influenced, and expression of Sufu and Brd4 was not substantially  
altered by JQ1 (Fig. 1b). Notably, the inhibition of Gli1 expression by 
JQ1 equaled that by SMO inhibitors (GDC-0449, LDE225 or SANT-1)  
(Fig. 1c,d). Additionally, shRNA-mediated knockdown of Brd4 in 
Hh-Light2 cells followed by Shh-N CM or SAG stimulation resulted 
in marked inhibition of ligand-induced Gli-luciferase activity and Hh 
target gene expression, directly supporting an essential role of Brd4 
in Hh signaling (Fig. 1e,f).

To further assess inhibition of Hh transcriptional output by JQ1, 
we used zebrafish harboring a ptc2:GFP reporter transgene, a well-
described canonical Hh pathway reporter in zebrafish50,51. Embryos 
exposed to JQ1 from 2 to 30 hours post fertilization (hpf) showed 
decreased expression of GFP mRNAs, similar to the results seen in 
cyclopamine-exposed fish (Fig. 1g). We also assessed whether JQ1 
could revert abnormal phenotypes caused by aberrant Hh signaling 
in a temperature-sensitive transgenic fish line harboring an hsp70l:
Shha–enhanced GFP (eGFP) transgene51, which overexpresses Shh 
and produces a reliable and well-described dysgenic eye phenotype 
that often includes a ventral coloboma, a structural defect in the eye 
resulting from improper closure of gaps located between various eye 
structures during embryonic development52,53. As predicted, heat-
shocked transgenic fish treated with vehicle alone (DMSO) developed 
abnormally shaped eyes with diminished diameter relative to their 
heat-shocked nontransgenic siblings (Fig. 1h). However, fish exposed 
to JQ1 immediately after heat shock trended toward more normal-
appearing eyes with statistically significant increases in eye diameter, 
suggesting that BET inhibition countered the effects of aberrant Hh 
signaling in vivo in this model (Fig. 1h).

BRD4 regulates Hh signaling at Gli1 and Gli2 promoters
We next examined the effects of JQ1 on Hh signaling in Sufu−/− 
mouse embryonic fibroblasts (MEFs)54 and Hh-Light2 cells over-
expressing GLI2. SUFU positively regulates the degradation of GLI 
proteins54, and thus loss of SUFU activity results in stabilization of 
GLI and constitutive Hh signaling downstream of SMO. As expected, 
we observed markedly increased Gli1 mRNA and protein levels in 
Sufu−/− MEFs, which were substantially downregulated by JQ1 
(Fig. 2a,c and Supplementary Fig. 2a,b). We also noted decreased 
transcription of Gli2, as well as Smo to a lesser extent, after JQ1 treat-
ment, whereas Brd4 mRNA levels remained unchanged (Fig. 2a). 
In stark contrast to JQ1 treatment, we observed little to no effect 
on Gli transcripts or Gli1 protein levels in Sufu−/− MEFs after treat-
ment with the SMO inhibitors (LDE225, GDC-0449 or SANT-1) 
(Fig. 2b,c). Consistent with pharmacological inhibition of Brd4, 
shRNA-mediated knockdown of Brd4 in Sufu−/− MEFs resulted in 

np
g

©
 2

01
4 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.



A r t i c l e s

734	 VOLUME 20 | NUMBER 7 | JULY 2014  nature medicine

decreased Gli1 and Gli2 mRNA levels (Fig. 2d). It is worth noting 
that Brd4 knockdown did not abrogate GLI-luciferase activity or 
Gli expression as effectively as did JQ1 treatment. This result could 
be explained by incomplete knockdown of Brd4, or it could suggest 
that other BET proteins (all targets of JQ1) may also contribute to 
the transcriptional regulation of Gli genes. Indeed, knockdown of 
either Brd2 or Brd3 resulted in a substantial decrease of Gli mRNA 
levels in Sufu−/− MEFs (Supplementary Fig. 2c).

In Hh-Light2 cells, forced expression of full-length mouse Gli2 
(hemagglutinin (HA)-Gli2-FL) or an N-terminally truncated active 
form of human GLI2 (Myc-GLI2-DN)55 resulted in an increase in Gli1 
mRNA levels, which was inhibited by JQ1 but not SMO inhibitors 
(GDC-0449, LDE225 or SANT-1) (Fig. 2e). Notably, we did not observe 
any decrease in ectopic GLI2 expression driven by the CMV promoter 
expression construct after JQ1 treatment, in contrast to the marked 
decrease in endogenous Gli transcripts (Figs. 1b and 2f). Additionally, 
upregulation of Ptch1, another Hh target gene, was not inhibited by 

JQ1, suggesting that not all Hh target genes are directly dependent on 
Brd4, as Gli genes themselves are (Supplementary Fig. 2d).

In Sufu−/− cells, JQ1 decreased Gli1 and Gli2 levels as early as 3 h  
after treatment, supporting a role for Brd4 as a transcriptional 
cofactor that directly regulates transactivation of Gli promoters 
(Supplementary Fig. 2e). Chromatin immunoprecipitation followed 
by quantitative PCR (ChIP-qPCR) using antibody to Brd4 of regions 
flanking the transcription start sites of Gli1 and Gli2 promoters con-
firmed increased Brd4 occupancy at both Gli promoters after SAG-
mediated activation of Hh signaling in Hh-Light2 cells (Fig. 2g,h). 
Accordingly, ChIP-qPCR with antibody to PolII showed engagement 
of both Gli promoters by PolII after SAG stimulation. Notably, both 
Brd4 and PolII interactions at the Gli promoters were blocked by the 
addition of JQ1 (Fig. 2g,h). Similarly, in Sufu−/− MEFs, we observed 
increased baseline occupancy of Gli promoters by Brd4 and PolII rela-
tive to that in wild-type (WT) MEFs, which was markedly inhibited 
by JQ1 (Fig. 2i,j).
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Figure 1  BRD4 is necessary for GLI transcription. (a) Gli-luciferase  
reporter activity in Hh-Light2 cells treated with Hh ligand (Shh-N CM  
or SAG) alone or in combination with increasing amount of JQ1. Data  
represent the mean of triplicates ± s.d. (b) qRT-PCR of Hh target genes  
(Gli1, Gli2 and Ptch1), Hh pathway components (Sufu and Smo) and  
Brd4 in Hh-Light2 cells treated with Hh ligand (Shh-N CM or SAG)  
alone or in combination with JQ1 (1 µM). Data represent the mean of  
triplicates ± s.d. (c) qRT-PCR of Gli1 mRNA levels in Hh-Light2 cells  
treated with Hh ligand (Shh-N CM or SAG) alone or in combination with  
1 µM of JQ1, GDC-0449, LDE225 or SANT-1. Data represent the mean  
of triplicates ± s.d. (d) Immunoblot detecting Gli1 expression in cell  
lysates from Hh-Light2 cells treated with Hh ligand (Shh-N CM or SAG)  
alone or in combination with 1 µM of JQ1, GDC-0449, LDE225 or  
SANT-1. An anti–β-tubulin (β-tub) immunoblot is shown as a loading  
control. The immunoblot shown represents a typical result from an  
experiment performed in duplicate. (e) Gli-luciferase reporter activity in  
Hh-Light2 cells treated with Hh ligand (Shh-N CM or SAG) in combination  
with shRNAs against Brd4 (shBrd4-1 and shBrd4-2) or scrambled shRNA (shCtrl). Data represent the mean of quadruplicates ± s.d. (f) qRT-PCR of 
Hh target genes (Gli1, Gli2 and Ptch1), Hh pathway components (Sufu and Smo) and Brd4 after treatment with Hh ligand (Shh-N CM or SAG) alone 
or in combination with shBrd4-1, shBrd4-2 or shCtrl. Data represent the mean of triplicates ± s.d. (g) In situ hybridization detecting GFP mRNA levels 
in transgenic (Tg) zebrafish (ptc2:GFP) treated with JQ1 (0.6 µM), cyclopamine (25 µM) or vehicle (veh) controls (DMSO or EtOH). The fraction of 
zebrafish with decreased GFP expression is shown. Fisher’s exact test was used for statistical analysis. *P < 0.05. Scale bar, 100 µm. (h) Images of a 
heat-shocked + Tg(hsp70l:Shha-eGFP) zebrafish or a nontransgenic sibling treated with JQ1 (0.6 µM) or DMSO. The eye diameter of each group (n = 12)  
was measured and is shown. Data represent the group means ± s.d. The P value shown was generated using Student’s t test. Scale bar, 100 µm.
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JQ1 inhibits Ptch-deficient medulloblastoma and BCC
We investigated the efficacy of JQ1 in Hh-driven tumors using cell 
lines derived from autochthonous medulloblastomas (SmoWT-MB 
and Med1-MB) arising in Ptch+/−; Trp53−/− and Ptch+/−; lacZ mice, 
respectively32,56, and BCC (ASZ001)57, also derived from Ptch+/− 

mice. JQ1 treatment resulted in marked downregulation of Gli mRNA 
and protein expression with little to no effect on Smo, Sufu or Brd4 
(Fig. 3a–d and Supplementary Fig. 3a). Again, we observed a rapid 
decrease of Gli gene expression after JQ1 treatment (as early as 3 h),  
supporting a direct effect of BET inhibition on Gli promoters 
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in Sufu−/− cells expressing shBrd4-1, shBrd4-2 or shCtrl. Data represent the mean of triplicates ± s.d. (e) qRT-PCR showing Gli1 mRNA levels in  
Hh-Light2 cells transiently transfected with HA-Gli2-FL or Myc-GLI2-DN and their responses to JQ1, GDC-0449, LDE225 or SANT-1. Data represent 
the mean of triplicates ± s.d. (f) Anti-HA and anti-Myc immunoblots on cell lysates from Hh-Light2 cells transfected with HA-Gli2-FL or Myc-GLI2-DN 
and treated with DMSO, JQ1, GDC-0449, LDE225 or SANT-1. An anti–β-tubulin immunoblot is shown as a loading control. (g–j) Schematic of regions 
flanking the Gli1 and Gli2 promoter transcription start sites (TSS) analyzed by ChIP-qPCR of Brd4 and PolII occupancies in Hh-Light2 cells treated with 
SAG and JQ1 (g,h) and in Sufu−/− MEFs treated with JQ1 (i,j). Data represent the mean of triplicates ± s.d. Except where indicated, cells were treated 
with 1 µM of JQ1, GDC-0449, LDE225 or SANT-1.
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(Supplementary Fig. 3b). Accordingly, ChIP-qPCR using antibodies  
to Brd4 and PolII showed potent inhibition of Brd4 and PolII 
occupancy at Gli promoters in all cell lines after exposure to JQ1 
(Supplementary Fig. 3c,d).

In Med1-MB and SmoWT-MB cells, JQ1 treatment resulted in 
dose-responsive decreases in cell viability to a much greater extent 
than those observed in Hh-Light2 or Sufu−/− MEFs (Supplementary 
Fig. 4a). Potent growth inhibition was achieved (half-maximum 
inhibitory concentration (IC50) ~50–150 nM; Supplementary  
Fig. 4b,c) with marked decreases of proliferation (Fig. 3e–h), induc-
tion of apoptosis (Supplementary Fig. 4d,e) and, in Med1-MB cells, 
an increased fraction of cells in G1 and a decreased fraction of cells 
transitioning through S phase (Supplementary Fig. 4f). Notably, in 
SmoWT-MB cells, the inhibitory effects of JQ1 on Gli expression, cell 
viability and proliferation were equivalent to those of SMO inhibitors 
(GDC-0449 or LDE225) (Fig. 3a,e,g and Supplementary Figs. 3a and 
4d), and these effects were enhanced when we exposed cells to both 
JQ1 and GDC-0449 in combination (Supplementary Fig. 4g).

Using microarray analysis, we assessed changes in global gene 
expression in JQ1-treated SmoWT-MB cells compared with 
DMSO- and GDC0449-treated cells. We observed a substan-
tial overlap between significantly differentially expressed genes 
(P < 0.0001) or gene sets (P < 0.0001; Supplementary Dataset) 
by JQ1 and GDC0449 in both cell lines compared with DMSO-
treated controls, including the anticipated GLI target genes Gli2, 
Ptch1, Ccnd1, Ccnd2, Hhip and Cdk6 (Supplementary Fig. 5a–c). 
We next compared JQ1-induced gene expression profiles with 
gene sets derived from previously published ChIP-chip studies,  
which indexed gene promoters with Gli1-binding sites in normal 
granule neuron precursor cells (GNPs) and Ptch+/− medulloblas-
toma cells58. Specifically, we analyzed for enrichment of ChIP-chip 
peaks associated with GNPs, medulloblastoma, the overlap of both 
and peaks associated with GNPs alone or medulloblastoma alone 

(Supplementary Table 1). Gene set enrichment analysis (GSEA) 
revealed that only genes with Gli1 promoter–binding sites associ-
ated with medulloblastoma were significantly enriched (P < 0.0001) in 
JQ1-treated cells (Supplementary Fig. 5d). These results confirm the 
disruption of Gli1-mediated transcription by JQ1 and the preferential 
targeting of Gli1 transcriptional activity in tumor cells43.

Ectopic GLI2 expression rescues growth inhibition by JQ1
We tested whether knockdown of Brd4 could phenocopy the effects 
of JQ1 in Hh-driven medulloblastoma cells. As expected, knock-
down of Brd4 resulted in decreased Gli expression (Fig. 4a,b) and 
cell proliferation (Fig. 4c,d), suggesting that the inhibitory effect of 
JQ1 was through targeting of Brd4. Furthermore, to directly assess 
whether BET inhibition blocked cell proliferation in Hh-driven tumor 
cells through targeting of Gli transcription, we used plasmid-based 
expression of GLI2 (Myc-GLI2-DN; Fig. 2f) in SmoWT-MB cells and 
monitored its ability to rescue the inhibition of proliferation by JQ1 
(Fig. 4c). Notably, ectopic expression of GLI2 inhibited the effects 
of JQ1 on 5-ethynyl-2′-deoxyuridine (EdU) incorporation, resulting 
in levels of EdU incorporation that were nearly equivalent to levels 
in DMSO-treated control cells (Fig. 4e,f). This result indicates that 
inhibition of proliferation by JQ1 is mediated largely through inhi-
bition of Gli transcription and, intriguingly, that Brd4-independent 
transcriptional targets of Gli transcription factors are sufficient to 
overcome BET inhibition.

SMOi-resistant Hh-driven tumors are inhibited by JQ1
Given the documented mechanisms of resistance to current, clinically 
available SMO inhibitors25,31 and the potential of BET inhibitors as 
a strategy to overcome this resistance, we examined the efficacy of 
JQ1 in Hh-driven cancers with either acquired or a priori resistance 
to SMO inhibitors (Fig. 5a). We analyzed the efficacy of JQ1 and SMO 
inhibitors (GDC-0449 and LDE225) against medulloblastoma cells 
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carrying an aspartate-to-glycine substitution at amino acid residue 
477 in Smo that results in decreased sensitivity to SMO antagonists 
(SmoD477G-MB) (Fig. 5b)32; patient-derived SUFU-mutated primary 
SHH-subtype medulloblastoma cells (RCMB025); patient-derived 
primary atypical teratoid rhabdoid tumor (ATRT) cells (CHB_ATRT1 
and SU_ATRT2) with derepression of GLI1 transcription through 
loss of SMARCB1 (also called SNF5 or INI1) (ref. 22); and patient-
derived MYCN-amplified primary SHH-subtype medulloblastoma  
cells (RCMB018). Cell viability (Fig. 5b–f, top), Gli and GLI  
levels (Fig. 5b–f, bottom) and EdU incorporation (Supplementary  
Fig. 6a–c) were markedly decreased in response to JQ1 in all of these 

cells, and we observed little or no effect with the SMO inhibitors 
GDC-0449 and LDE225. Additionally, we examined Myc, MYC, Mycn 
and MYCN expression in SmoWT-MB, SmoD477G-MB, RCMB025, 
CHB_ATRT1 and RCMB018 cells and found that Mycn and MYCN 
expression was consistently inhibited by JQ1 (Fig. 5f, bottom and 
Supplementary Figs. 4h and 6d–f), suggesting that JQ1 targets at least 
two important driver oncogenes (GLI and MYCN) in these tumors.

In vivo inhibition of Hh-driven tumors by JQ1
To support a therapeutic role for BET inhibition in Hh-driven tumors, 
we assessed the in vivo efficacy of JQ1 against medulloblastomas and 
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BCCs. We treated flank and intracranial allografts of Med1-MB cells 
stably expressing a firefly luciferase reporter in immunodeficient NSG 
mice with either JQ1 (50 mg per kg body weight per day intraperito-
neally (i.p.)) or vehicle control. We observed a significant reduction 
in flank tumor growth in JQ1-treated mice, as well as an increase 
in overall survival in JQ1-treated mice harboring intracranial allo-
grafts (Fig. 6a,b and Supplementary Fig. 7a). Additionally, we treated 
medulloblastoma flank allografts of SmoWT-MB or SmoD477G-MB 

cells with vehicle control, JQ1 (50 mg per kg body weight per day 
i.p.) or GDC-0449 (100 mg per kg body weight per day orally (p.o.)). 
We observed marked decreases in the growth of SmoD477G-MB  
flank allografts in response to JQ1 but not GDC-0449, whereas 
SmoWT-MB flank allografts responded to both GDC-0449 and JQ1  
(Fig. 6c,d). To evaluate the efficacy of JQ1 against BCCs in vivo, we used 
an allograft model of Ptch+/−; K14-creER2; p53flox/flox–derived mouse 
BCC cells34. JQ1 treatment (50 mg per kg body weight per day i.p.)  
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Figure 5  JQ1 inhibits Hh pathway activity and cell viability and proliferation in SMOi-resistant Hh-driven tumors. (a) Schematic depicting mechanisms 
of resistance to Smoothened antagonists in Hh-driven cancers. (b–f, top) Cell viability in SMOi-resistant medulloblastoma cells (SmoD477G-MB; b), 
patient-derived SUFU mutant medulloblastoma cells (RCMB025; c), patient-derived ATRT cells (CHB_ATRT1 and SU_ATRT2; d,e) and patient-derived 
MYCN-amplified medulloblastoma cells (RCMB018; f) treated with increasing doses of JQ1, GDC-0449 or LDE225. Data represent the group  
means ± s.d. (b–f, bottom) qRT-PCR of Gli1, GLI1, Gli2, GLI2, Brd4 and BRD4 (plus MYC and MYCN levels for RCMB018) in SmoD477G-MB (b), 
RCMB025 (c), CHB_ATRT1 (d), SU_ATRT2 (e) and RCMB018 (f) cells in response to JQ1 (1 µM), GDC-0449 or LDE225 (0.1 µM for SmoD477G-MB 
and 1 µM for the other groups). Data represent the mean of triplicates ± s.d.
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resulted in significant growth inhibition of BCCs but was not as 
effective as the clinically optimized SMO inhibitor BMS-833293  
(ref. 34) (Fig. 6e). Nonetheless, in all Hh-driven tumor models 
tested, we observed reduction of Gli mRNA levels after JQ1 treat-
ment regardless of whether allografts were sensitive or resistant to 
SMO inhibition (SMOi) (Supplementary Fig. 7b–f). Together these 
results demonstrate in vivo efficacy of JQ1 against Hh-driven tumors, 
even those with acquired or a priori resistance to clinically available 
SMO inhibitors.

DISCUSSION
We have shown that BRD4 and other BET proteins are critical regu-
lators of GLI1 and GLI2 transcription and that BET inhibition pro-
vides a new therapeutic strategy against Hh-driven tumors. Notably, 
as BET proteins regulate the far-downstream transcriptional output 
of Hh signaling, BET inhibition was effective against tumor cells that 
evade Smoothened antagonists through mutation of SMO or amplifi-
cation of nodes downstream of SMO. Our study is clinically relevant 
for patients who have a priori resistance to SMO inhibitors and in 
cases in which the emergence of resistance develops after an initial 
response to such therapy. By acting directly on the GLI1 and GLI2 
promoters, BET inhibition circumvents all SMOi resistance mecha-
nisms that have been reported so far, which include mutations of 
SMO or SUFU or amplifications in GLI2 or MYCN16,17,20,25,31. The 
response to JQ1 observed in MYCN-amplified SHH medulloblastoma 
cells (RCMB018), in terms of both decreased cell viability and MYCN 
levels, is similar to the results of a recent study showing the efficacy 
of BET inhibitors in MYCN-amplified neuroblastoma46. However, in 
Hh-driven tumors, it is likely that decreased MYCN levels in response 
to JQ1 treatment reflect the role of GLI in directly transactivating the 
MYCN promoter, in addition to the role of JQ1 in directly regulating 
expression of Mycn and MYCN.

Given the importance of Hh signaling in normal development, it 
will be essential to understand and anticipate potential toxicities of 
BET inhibitor therapies as they enter into clinical trials. We observed 
developmental anomalies at very high doses of JQ1 in our zebrafish 
studies (data not shown), consistent with those seen in Brd4 hetero-
zygous mice, which display a multitude of defects that overlap with 
cyclopamine-treated or Hh-deficient mice59,60. Of note, however, Brd4 
heterozygous mice develop craniofacial but not overt axial skeletal 
phenotypes59, unlike cyclopamine-exposed embryos2,60, suggesting 
lineage-specific differences of Hh pathway dependency on Brd4. Our 
finding that plasmid-driven GLI2 expression can rescue the prolifera-
tion defect induced by JQ1 supports the existence of GLI-responsive 
promoters that do not require BRD4 for their transactivation. Notably, 
such genes appear to be either individually or collectively sufficient to 
mediate part, if not all, of the oncogenic phenotype associated with 
Hh-GLI signaling.

Investigating how BRD4 regulates normal Hh-mediated biological 
processes and documenting BRD4-related changes that occur dur-
ing Hh-mediated oncogenic transformation could potentially elu-
cidate factors essential for tumor development that are independent 
of normal development. Our analysis of gene expression changes in 
JQ1-treated medulloblastoma supports observations by Lee et al.58, 
who identified marked shifts in Gli1 occupancy across the genome in 
medulloblastoma compared to GNPs. An unbiased characterization of 
Brd4 binding across the genome in GNPs and medulloblastomas will 
clarify whether the genomic footprint of Brd4 overlaps with Gli occu-
pancy in the oncogenic state relative to the normal developmental 
state. Related to this point, emerging evidence suggests BET proteins 

converge on super-enhancer sites across the genome and that these 
super-enhancer sites help transactivate promoters of key regulators of 
cellular identity in normal and pathogenic contexts42,43. Whether GLI 
transactivates super enhancer–related promoters and, accordingly, 
whether super-enhancer sites are positioned over GLI promoters is 
currently under active investigation.

Methods
Methods and any associated references are available in the online 
version of the paper.

Accession codes. Gene expression profiling data has been deposited 
into the National Center for Biotechnology Information (NCBI) Gene 
Expression Omnibus (GEO) with accession code GSE58185.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Ethics statement. All studies were performed under approval and oversight 
by the Institutional Review Board committees of Stanford University, Boston 
Children’s Hospital and Rady Children’s Hospital/Sanford-Burnham Medical 
Research Institute.

Cell lines and drug reagents. Mouse BCC (ASZ001), 293T and Hh-Light2 
cells were derived and maintained as previously described24,34,57. RCMB025 
and RCMB018 cells were derived from primary surgical resections of two medul-
loblastoma cases at Rady Children’s Hospital and were further characterized 
by whole-genome sequencing as having a SUFU mutation and MYCN ampli-
fication, respectively61. CHB_ATRT1 cells were derived from tumor obtained 
at the time of primary surgical resection of a posterior fossa ATRT at Boston 
Children’s Hospital. SU_ATRT2 cells were derived from tumor obtained at 
the time of surgical resection of an intraventricular ATRT at Lucile Packard 
Children’s Hospital/Stanford University Medical Center. Med1-MB cells, gener
ated from a spontaneous tumor arising in a Ptch+/−; lacZ mouse, were kindly 
provided by M. Scott (Stanford). SmoWT-MB and SmoD477G-MB cells isolated 
from either parental SmoWT or SmoD477G mouse Ptch+/−; p53−/− MB hind-
flank allografts were kindly provided by C. Rudin (Memorial Sloan-Kettering 
Cancer Center). Sufu−/− MEFs (conditional deletion of exons 4–8 (ref. 54)) were 
kindly provided by P.-T. Chang (University of California, San Francisco). SAG, 
SANT-1, GDC-0449 (S1082, Vismodegib, HhAntag691) and LDE225 (S2151, 
NVP-LDE225, Erismodegib) were purchased from SelleckChem.com. Shh-N 
CM was kindly provided by P. Beachy (Stanford). JQ1 was synthesized as previ-
ously described44.

RNA extraction and qRT-PCR. RNA was extracted using QIAzol Lysis Reagent 
(79306, Qiagen, Venlo, Netherland) per the manufacturer’s instructions. Reverse 
transcription was performed with 1 µg total RNA using the High Capacity cDNA 
Reverse Transcription Kit (4368813, Invitrogen). Real-time qPCR was performed 
using 2× Maxima SYBR Green qPCR Master Mix (#K0251, Thermo Scientific) 
on an Eppendorf Mastercycler PCR machine. The qPCR primers used are listed 
in Supplementary Table 2.

Cell cycle, proliferation, viability and apoptosis assays. For cell cycle analysis, 
cells were fixed in 70% ethanol for 30 min at 4 °C. After two washes with cold 
PBS, fixed cells were resuspended in staining buffer (200 µl PBS + 10 µl 1 mg 
ml−1 propidium iodide + 2 µl 100 mg ml−1 RNase A) and incubated at 37 °C for 
45 min. Cells were washed once with cold PBS and filtered through a 70-µM 
mesh (ELKO Filtering Co., Miami, FL, USA). Filtered cells were centrifuged 
and resuspended in 500 µl PBS for FACS analysis. Proliferation assays were 
performed by culturing cells in the presence of 10 µM EdU for 6–8 h. The 
EdU+ population was determined using either the Click-iT EdU Alexa Fluor 
488 Flow Cytometry Assay Kit (C35002, Invitrogen, CA, USA) or the Click-iT 
EdU Alexa Fluor 594 Imaging Kit (C10339, Invitrogen, CA, USA). Cells were 
counterstained with DAPI (D8417, Sigma, MO, USA), and the proliferation 
index was calculated as EdU+/DAPI+ cells. Apoptosis was analyzed using the 
BD Pharmingen FITC Annexin V Apoptosis Detection kit I (Cat# 556547, BD 
Biosciences, CA, USA) per the manufacturer’s instructions. Cell viability was 
assessed using CellTiter-Glo (G7573, Promega, WI, USA) according to the 
manufacturer’s instructions. Cells were plated at 5,000 cells per well in 96-well 
plates and treated with drugs as indicated, and data were collected on a TECAN 
Infinite 200 plate reader. The drug synergy between JQ1 and GDC-0449 was 
calculated using CalcuSyn software (Biosoft, Cambridge, UK). A combination 
index less than 1 was considered as synergistic. All FACS data were collected 
on a BD Fortessa analyzer (BD Biosciences, CA, USA), and data analyses were 
performed using Flowjo software (Tree Star, OR, USA).

GLI2 overexpression. The Myc-GLI2-DN (17649, pCS2-MT-GLI2-∆N) plas-
mid was purchased from Addgene (Cambridge, MA, USA). The 3×HA-Gli2-FL 
plasmid was kindly provided by P. Beachy (Stanford). Plasmid transfection was 
performed using Turbofect transfection reagent (#R0531, Thermo Scientific) 
according to the manufacturer’s instructions. Cells were treated with drugs  
24 h after transfection as indicated.

Western blot analysis. Cells were lysed with RIPA buffer (sc-24948, Santa Cruz 
Biotechnology) for 30 min on ice, and lysates were cleared by centrifugation at 
13,000 r.p.m. for 15 min at 4 °C. Supernatants were incubated with 4× Laemmli 
sample buffer (#161-0747, Bio-rad) at 95 °C for 5 min. The samples were then 
separated with SDS-PAGE gel and immunoblotted with the indicated antibodies: 
anti-HA (ab18181, Abcam; 1:5,000 dilution), anti–c-Myc (sc-789, Santa Cruz 
Biotechnology; 1:1,000 dilution), anti-GLI1 (#2643, Cell signaling; 1:1,000 dilu-
tion) and anti–β-tubulin (ab6046, Abcam; 1:5,000 dilution).

Lentiviral infection. shRNA lentiviral constructs against mouse Brd2, Brd3 
and Brd4 (The RNAi Consortium mouse collection) were kindly provided by  
A. Sweet-Cordero (Stanford), and shRNA insertion sequences were confirmed 
by Sanger sequencing. To produce shRNA lentiviruses, 293T cells were trans-
fected with a lentiviral vector and packaging plasmids (pDelta 8.92 + VSV-G). 
Titers were collected 48 h after transfection and concentrated by polyethylene  
glycol precipitation. The precipitated lentivirus was resuspended in PBS and 
aliquoted for storage at −80 °C. For shRNA lentivirus infection, cells were  
incubated with shRNA lentivirus for 16 h. At 48 h after infection, puromycin 
was added to select virally infected cells for further experiments.

Dual-luciferase reporter assay. Hh-Light2 cells were cultured until conflu-
ent and treated with drugs as indicated. Dual-luciferase reporter assays were 
performed using the Dual-Luciferase Reporter Assay System 10-Pack (E1960, 
Promega, WI, USA) according to manufacturer’s instructions, and data were 
collected on a TECAN Infinite 200 plate reader.

ChIP-qPCR. Cells were fixed with 1% formaldehyde for 10 min at room tem-
perature before adding glycine to stop the fixation. The cells were then harvested, 
snap frozen and stored at −80 °C before use. For each ChIP experiment, chro-
matin isolated from 106 to 107 cells was sonicated and immunoprecipitated with 
3–5 µg of the indicated antibody and 100 µl Dynabeads protein G. Beads were 
washed five times with RIPA buffer and one time with Tris + EDTA containing 
50 mM NaCl. Bound complexes were eluted by heating at 65 °C with occasional 
vortexing for 30 min, and crosslinking was reversed by overnight incubation at 
65 °C. INPUT DNA was also treated for crosslink reversal. Immunoprecipitated 
DNA and INPUT DNA were then purified by RNaseA/proteinase K treatment, 
phenol:chloroform extraction and ethanol precipitation. qPCR was performed 
using 2× Maxima SYBR Green qPCR Master Mix (#K0251, Thermo Scientific) 
on an Eppendorf Mastercycler PCR machine. The ChIP-qPCR primer sequences 
used are listed in Supplementary Table 2.

Gene expression microarray analysis. All gene expression profiling data has 
been deposited into the National Center for Biotechnology Information (NCBI) 
Gene Expression Omnibus (GEO) with accession code GSE58185.

Gene expression data were generated from total RNA derived from biological  
duplicates of SmoWT-MB cells treated with control (DMSO), JQ1 (1 µM) or 
GDC-0449 (0.1 µM) for 6 h. RNA was hybridized to Illumina MouseWG-6 
v2.0 (SmoWT-MB) expression bead arrays per the manufacturer’s instructions. 
Rank-invariant normalized data were generated using GenomeStudio v1.9.0 and 
converted to .gct file format, which was then collapsed to gene symbols using 
the GSEA desktop application (http://www.broadinstitute.org/gsea/index.jsp). 
Differentially expressed genes were visualized using the GENE-E desktop appli-
cation (http://www.broadinstitute.org/cancer/software/GENE-E/), and the top 
5,000 differentially expressed genes between drug-treated and control-treated 
cells were used for agglomerative hierarchical clustering using Pearson correla-
tion and the average linkage metric across samples and genes.

Comparative marker selection analysis between JQ1- or GDC-0449– and 
DMSO-treated cells was performed in GenePattern using the default settings. 
Genes with a P value less than 0.05 and a q value less than 0.1 were considered to 
be significantly differentially expressed. We performed χ2 analysis to determine 
the significance of the overlap between genes that were downregulated by JQ1 
and GDC-0449. To identify gene sets differentially expressed after treatment 
with JQ1 or GDC-0449 (compared to DMSO-treated controls), GSEA was per-
formed as previously described62 using the C2cpg gene set (MSigDB). Gene sets 
with a nominal P value less than 0.05 and q value less than 0.25 were considered 
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significant. We performed Fisher’s exact test to determine the significance of the 
overlap between gene sets that were downregulated by JQ1 and GDC-0449.

GSEA was also performed using gene sets (.gmt files) derived from Puissant 
et al.46, Atwood et al.34 and Lee et al.58 (Supplementary Table 1). Briefly, genes 
associated with Gli1 ChIP-chip peaks in normal GNPs and medulloblastoma 
(listed in Supplementary Table 1a,b from Lee et al.58) were converted to gene 
sets (Lee_Gli1_GNP and Lee_Gli1_MB). We then used the Venn diagram func-
tion in GENE-E to generate gene sets of overlapping and distinct genes between 
these lists (Lee_Gli1_GNP_only, Lee_Gli1_MB_only and Lee_Gli1_GNP_ 
MB_overlap).

In vivo mouse studies. In vivo efficacy studies were performed in accordance 
with protocols approved by the Institutional Animal Care and Use Committee 
at Stanford University and Children’s Hospital Research Center Oakland. SMOi-
naive BCC allografts were derived from BCC tumors generated in Ptch+/−; K14-
creER2; p53flox/flox mice as previously described34. Tumors were treated with 
vehicle control, BMS-833293 (Bristol Myers Squib Hedgehog inhibitor) (100 mg 
per kg daily i.p.) or JQ1 (50 mg per kg daily i.p.) until euthanasia was required 
when the size of vehicle-treated tumors exceeded the limit in our animal care 
guidelines. Tumor size was measured with calipers every 3–4 d. Tumors were 
also harvested for RNA analysis. SMOi-resistant mouse BCCs were generated by 
treating SMOi-naive BCC allografts with BMS-833293 in a cyclical fashion and 
then with JQ1 as described above. The tumors were treated with JQ1 (50 mg per 
kg daily i.p.) or vehicle for 7 d before harvesting for RNA analysis.

For in vivo medulloblastoma studies, SmoWT-MB, SmoD477G-MB and  
GFP-luciferase–transduced Med1-MB cells were used for flank or cerebellum 
injections. 2 × 106 cells were injected into the flank of each 4- to 6-week-old 
NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mouse (The Jackson Laboratories). 
0.5 × 106 cells were used for cerebellum injection, as previously described32. 
After engraftments were confirmed, mice were randomized into treatment 
and control groups and treated with vehicle control, GDC-0449 (100 mg per 
kg body weight daily p.o.) or JQ1 (50 mg per kg body weight daily i.p.) until 
euthanasia was required. Tumor growth was measured with calipers or moni-
tored by IVIS imaging on a Xenogen IVIS2000 (Perkin-Elmer). At the end of  

treatment, tumors were harvested in RNAlater for RNA analysis. Survival data 
were recorded for the cerebellum-injected mice using Med1-MB cells.

Zebrafish studies. All fish studies were performed in accordance with protocols 
approved by the Institutional Animal Care and Use Committee at the Medical 
College of Wisconsin. Zebrafish embryos from an outcross of Tg(GBS-ptch2:
eGFP)+/− with TL (Tübingen long-fin) WT were exposed to JQ1 at concentra-
tions ranging from 0.25 to 5 µM. A 0.6 µM working dose was determined to be 
optimal for in vivo studies, as it caused no phenotype, in contrast to 0.75 µM, 
which caused elevated cell death and dysmorphology. The ptch2:GFP reporter 
fish were then exposed to JQ1, cyclopamine (25 µM) or vehicle control (DMSO 
or EtOH for JQ1 and cyclopamine, respectively) from 2 to 30 hpf and then fixed 
with 4% paraformaldehyde for in situ hybridization using a GFP probe and fast 
red. All fish with GFP positivity were scored for intensity of staining.

For Shh overexpression experiments, embryos from a Tg(hsp70l:Shha-
eGFP)+/− × TL WT cross were collected and heat shocked at 38 °C for 15 min at 
the eight-somite stage. After heat shock, the embryos were immediately placed 
in JQ1 at a 0.6 µm or 6.0 µm concentration. DMSO was used as a negative 
control. At 12 hpf, GFP-positive and GFP-negative embryos were sorted, and 
embryos were transferred to equivalent concentrations of fresh drug or DMSO. 
Images were captured using a Nikon Coolpix digital P520 camera fitted to a 
Lieca MZLIII stereo microscope at 30 and 56 hpf. Embryos were scored for eye 
size (dorsal axis length) at 56 hpf.

Statistical analyses. Two-way ANOVA was used for comparing tumor growth 
curves. Log-rank test was used for comparing survival curves. χ2 or Fisher’s 
exact test was used for statistical analyses of contingency table data. Student’s t 
test was used for all the other comparisons.
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