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E D I T O R I A L

Fostering a healthy culture: Biological relevance of in vitro and 
ex vivo skin models

1  |  BRIDGING THE GAP BET WEEN 
“SIMPLICIT Y ” OF IN VITRO AND 
COMPLE XIT Y OF IN VIVO

The field of experimental dermatology research has dramatically 
benefited from the insights yielded by in vivo studies on animal 
models. Indeed, much of our understanding of the mechanisms 
that regulate embryonic skin development, adult skin homeostasis 
and physiological skin responses to stress, such as wound healing, 
has been educated by studies conducted in animal models, includ-
ing mutant mice. These works become commonly published on the 
pages of Experimental Dermatology and, in fact, represent one of the 
core interests of the journal. Highlighting in vivo mouse model stud-
ies are recent works on hair follicle development and growth1-5 and 
wound healing.6-8 Further, studies in animal models often help to 
elucidate aspects of disease pathogenesis, and mouse models are 
used to investigate mechanisms of human skin conditions such as 
atopic dermatitis,9-13 contact dermatitis,14-16 psoriasis,17,18 rosacea19 
and squamous cell carcinoma20 to name a few.

On the other hand, not all human skin diseases or aspects of 
human skin physiology can be reliably modelled in rodents. This 
is not surprising, considering that humans and rodents are sepa-
rated by an estimated 96 million years of evolution.21 Addressing 
this fact, many studies are being conducted on patient-derived 
primary skin cells, including human keratinocytes,22-25 melano-
cytes,26-30 fibroblasts31-34 and cell co-cultures.35-37 However, 
typical in vitro culture conditions fail to replicate and, in fact, do 
not come close to imitating the biomechanical and biochemical 
complexity of the microenvironment in which cells exist and to 
which they respond to in native tissues. Further, ingredients in 
commonly used cell culture media and the two-dimensional con-
straints of growth on plastic result in cells being exposed to a 
lot of artificial cues, to which they adapt but also prominently 
alter their gene expression profile and functional activities in the 
process. Therefore, behaviours displayed by skin cells in two-
dimensional cultures need to be comprehensively validated under 
more native-like conditions in order to be deemed biologically 
and physiologically relevant. Helping to bridge the gap, three-
dimensional (3D) organotypic cultures and organ culture tech-
niques have long been a highly instructive tool for investigating 
complex, tissue-level behaviours by skin cells.

2  |  WHAT ORGANOT YPIC CULTURES C AN 
AND C AN'T DO

Typically composed of primary cells isolated from patient skin 
biopsies or surgical discard samples, the idea of studying 3D 
skin equivalents in vitro is an attractive premise for investigative 
dermatologists. From gaining molecular insight into essential 
aspects of skin development and homeostasis to preclinical testing 
of new drug candidates for skin diseases to their use as “tissue 
farms” to grow new skin substitutes for burn and trauma patients, 
3D cultures are becoming a mainstay approach both in basic and 
translational dermatological research (Figure 1). Current 3D culture 
technologies include the following: (i) free-floating cultures of 
spherical organoids initiated from pluripotent stem cells; (ii) layered 
constructs consecutively assembled by seeding primary skin cells 
into extracellular matrix scaffolds38 to contain stratified epidermis, 
sebocyte spheroids39 or hair pegs40; (iii) freshly micro-dissected 
skin and hair follicle explant cultures41-44; and (iv) organ-on-a-chip 
cultures that incorporate capillary structures and allow active 
perfusion using microfluidics.45,46

However, so-called 3D skin “equivalent” cultures are not without 
limitations. For instance, despite their morphological similarity to 
native skin in vivo, their cellular composition is extremely simplified, 
and culture protocols can vary greatly, which affects reproducibil-
ity and interpretation. Depending on the protocol used, 3D cultures 
may not have a normal stratum corneum, an intact epidermal bar-
rier, or proper lipid composition.47 Critically, 3D cultures, no matter 
how sophisticated, lack system-level aspects of normal skin, such 
as fully functioning vasculature, immune system and innervation. 
Even though this may be partially compensated for with ex vivo-
reinnervation protocols,48 this puts limits on the maximum size that 
3D cultures can achieve before experiencing hypoxia and simplifies 
their responses to external and neurotrophic stimuli.

Yet, 3D cultures of the same primary skin cells49 are still far more 
complex than their monolayer counterparts. For instance, a recent 
genome-wide methylation study showed no correlation between 
methylation status and transcriptome changes during keratinocyte 
differentiation in a monolayer culture,22 despite other data show-
ing significant methylation changes during in vivo skin morphogen-
esis.50,51 Likewise, normal expression patterns of terminal marker 
genes are significantly impaired in Ca2+ induced differentiation of 

© 2021 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd

www.wileyonlinelibrary.com/journal/exd


2  |    EDITORIAL

primary keratinocytes.23 Yet, the biological relevance of monolayer 
cultures can be substantially increased by co-culturing two or more 
cell types. For instance, a recently reported co-culture study of se-
nescent dermal fibroblasts and macrophages identified macrophage-
derived TNFα as an important trigger of senescent cell apoptosis 
and clearance.35 Also, the co-culture of dermal fibroblasts and ke-
ratinocytes can model particulate matter exposure, where factors 
released by keratinocytes after heavy metal and hydrocarbon expo-
sure can mediate dermal collagen degradation.36 In other examples, 
co-cultures of vitiligo patient-derived CD4+ and CD8+ T cells,52 or 
keratinocytes and T cells from psoriasis patients,37 can be used to 
advance our understanding of skin disease immunopathogenesis.

3  |  WHERE ORGANOT YPIC SKIN 
CULTURES “SHINE”

3D equivalent cultures are commonly used to study both basic 
and translational aspects of skin biology (Figure 1B). For example, 
relatively simple skin equivalents, featuring only keratinocytes and 
fibroblasts, have been recently used to study the effects of Dead 
Sea water minerals on terminal epidermal differentiation.53 More 
complex 3D equivalents that also contain melanocytes can be 
used in studies on pigment-modulating components of cosmetic 
products54 or to test the effect of organic environmental toxins 
on hyperpigmentation.55 Recently, 3D equivalent cultures have 
also been used to evaluate the impact of microbiota on skin cell 

function.56,57 Considering the relative simplicity of 3D equivalents, 
full-thickness skin biopsy explants are commonly used in follow-up 
validation experiments (Figure 1C). Recent examples of using skin 
explants include studies on penetration and metabolism of vitamin 
A derivatives41 and the effect of cigarette smoke exposure on skin 
barrier permeability.42

Where 3D skin equivalents and skin explants really shine is in 
their ability to model aspects of human skin disorders, including dry 
skin,58 radiodermatitis59 or hidradenitis suppurativa60 to name but 
a few. In this issue of Experimental Dermatology, Yoshida et al. re-
port on modelling hand-foot skin reaction (HFSR),61 a common side 
effect of anti-angiogenic therapies, where soles and palms experi-
ence hyperkeratosis, leading to debilitating pain, difficulties walk-
ing and object grasping.62 Small-molecule tyrosine kinase inhibitors, 
such as sunitinib, are used as angiogenesis inhibitors against various 
types of cancer, and the occurrence of HFSR is often correlated with 
successful treatment.63 Sunitinib-induced HFSR causes epidermal 
thickening, with spinous and granular layers thinning and, at times, 
separating from the reactive basal layer.64

Yoshida et al. analysed both monolayer cultures of keratino-
cytes and 3D skin equivalents treated with sunitinib and revealed 
decreased expression of basal gene KRT6A and terminal differen-
tiation genes SERPINB1 and SPINK6, suggesting the skin barrier is 
perturbed in HFSR.61 p38 MAPK and ERK1/2 phosphorylation was 
also inhibited upon sunitinib treatment, suggesting that the MAPK 
pathway may control skin barrier gene expression. As subsequent 
MAPK signalling inhibition in monolayer keratinocyte cultures 

F I G U R E  1 In vitro and ex vivo skin culture models in dermatological research. Common applications are listed for (A) self-organized skin 
organoids, (B) skin equivalents produced by seeding primary cells into extracellular matrix scaffolds and (C) explant cultures of freshly micro-
dissected skin and/or hair follicles
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phenocopied sunitinib treatment, the authors reasoned that acti-
vation of MAPK signalling could rescue the sunitinib-induced gene 
expression changes. Nuclear CTNNB1 can promote both p38 MAPK 
and ERK1/2 activity, whereas GSKB suppresses nuclear CTNNB1. 
Using an inhibitor to GSK3B with and without sunitinib, the au-
thors showed that MAPK signalling and skin barrier gene expression 
changes can both be rescued, suggesting that GSK3B inhibitors may 
be a clinically relevant treatment to HFSR.

Another common skin disorder ripe for in vitro modelling is acne 
vulgaris, where genetic predispositions, hormonal changes, stress 
and environmental factors lead to the formation of microcomedo-
nes,65-67 many of which can become inflamed.68 Inflammatory mi-
crocomedones are caused by hyperseborrhoea, where fatty acid 
composition of sebum becomes altered, leading to accumulation of 
peroxidized squalene and favouring expansion of C. acnes.66,69,70 The 
condition is aggravated by hair duct clogging with overproduced and 
abnormally differentiated epidermis. In this issue of Experimental 
Dermatology, Laclaverie et al. developed and characterized a 3D skin 
equivalent model for acne vulgaris.71 The authors used primary kera-
tinocyte- and fibroblast-seeded 3D skin equivalents that were sub-
sequently treated with peroxidized squalene and/or C. acnes. They 
showed that combined treatment results in inflammatory, skin de-
fense and remodelling gene expression changes analogous to those 
seen in acneic skin. The authors then tested different phylotypes of 
C. acnes strains isolated from healthy and acneic patients and found 
that strain IA1, commonly found in acne-prone skin, causes the 
major hallmarks of acne including hyper-keratinization, inflammation 
and altered barrier function.

4  |  GROWING HAIRS IN A PETRI DISH

The dynamic biology of hair follicles poses a particular challenge 
for their organotypic culture, yet in vitro approaches have been 
actively pursued in the field driven by many differences between 
human scalp and mouse pelage hairs and by the unmet demand to 
bioengineer new hair follicles to treat hair loss. With regard to hair 
bioengineering, competent hair-fated epithelial and mesenchymal 
skin cells, such as those derived from neonatal mice, can 
efficiently self-organize into many new hair follicles when injected 
subcutaneously into host mice. However, such injections produce 
“hairy cysts” that lack proper follicle orientation and are, thus, not 
therapeutically viable.72,73

To overcome this fundamental limitation, Paik et al. recently re-
ported an approach in which neonatal mouse dermal and epidermal 
cells are cultured within the collagen scaffold prior to being grafted.74 
This approach produces high densities of hair follicles that maintain 
near-normal orientation perpendicular to the skin surface. In an ef-
fort to translate similar tissue engineering approaches to the human 
system, Weber et al. developed a 3D model for co-culturing human 
neonatal foreskin keratinocytes with human foetal scalp dermal cells 
that permits their self-organization into hair peg-like structures.40 
When grafted after in vitro self-assembly to nude mice, at least some 

peg-like structures matured towards functional human hair follicles. 
To this end, recent advances in pluripotent stem cell differentiation 
protocols have enabled production of human hair follicle-bearing or-
ganoids fully in vitro (Figure 1A).75 Progress on this and similar in vitro 
hair-bearing organoid systems is discussed in a recent Experimental 
Dermatology Viewpoint article.

Cultures of freshly micro-dissected human scalp hair follicles, 
which are a special variant of skin explant culture, have been suc-
cessfully used to study aspects of human hair biology not dis-
played in the animal models and have been instructive for our 
understanding of human hair follicle physiology and pathology 
(Figure 1C).76,77 Studies on human hair follicle organ cultures are 
commonly featured in this journal, including recent works that 
examined hair growth-promoting effect of dermal papilla-derived 
exosomes,78 regulation of hair follicle immune privilege79 and 
modulation of hair growth by the blue light-sensitive circadian 
clock factor CRY1.80

While explant cultures of freshly dissected skin and hair follicles 
are arguably the most physiologically complete type of ex vivo cul-
ture models, they still suffer from being cut-off from numerous mi-
croenvironmental and systemic inputs that regulate their physiology 
in vivo. To this end, a recent study showed that growth and pigmen-
tation parameters of scalp hair follicles in vitro are improved if they 
are cultured with the adjacent piece of dermal adipose tissue that 
secretes hepatocyte growth factor.81 Sensory nerves are another 
important source of regulatory signalling molecules, from which skin 
explants become severed in culture. To this end, a co-culture with rat 
dorsal root ganglions (rDRGs) permits partial sensory reinnervation 
of human skin explants in vitro,48 where “trophic” effects of rDRGs 
have been shown to positively affect epidermal proliferation and in-
duce activation of resident mast cells.82

Taken together, the above examples clearly show that organo-
typic cultures have already evolved to a level of technical sophisti-
cation that permits studying aspects of normal skin physiology and 
conducting meaningful disease modelling. As the citations listed 
here demonstrate, Experimental Dermatology prides itself for being 
at the forefront of this area in skin biology research. At present, ex-
perimental dermatologists have the “luxury” to choose from several 
models, ranging from self-organizing skin organoids to cell-seeded 
extracellular matrix scaffolds to freshly micro-dissected skin or ap-
pendage explants. Looking into the future, technical efforts aimed at 
better imitating system-level inputs will eventually advance organo-
typic cultures towards true organ-on-a-chip level, when complex 
skin functions, such as hair growth cycling, and progression of major 
skin diseases will be modelled fully ex vivo.
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